
Oxidative stress and male infertility—a clinical perspective

Kelton Tremellen1,2,3

1Repromed, 180 Fullarton Road, Dulwich, 5065 Adelaide, South Australia, Australia; 2Discipline of Obstetrics and Gynaecology,

University of Adelaide, South Australia, Australia

3Correspondence address. Tel: þ618-83338111; Fax: þ618-83338188; E-mail: kelton.tremellen@adelaide.edu.au

Oxidative stress occurs when the production of potentially destructive reactive oxygen species (ROS) exceeds the bodies
own natural antioxidant defenses, resulting in cellular damage. Oxidative stress is a common pathology seen in approxi-
mately half of all infertile men. ROS, defined as including oxygen ions, free radicals and peroxides are generated by
sperm and seminal leukocytes within semen and produce infertility by two key mechanisms. First, they damage the
sperm membrane, decreasing sperm motility and its ability to fuse with the oocyte. Second, ROS can alter the sperm
DNA, resulting in the passage of defective paternal DNA on to the conceptus. This review will provide an overview of
oxidative biochemistry related to sperm health and will identify which men are most at risk of oxidative infertility.
Finally, the review will outline methods available for diagnosing oxidative stress and the various treatments available.
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Introduction

Male factor infertility accounts for up to half of all cases of

infertility and affects one man in 20 in the general population

(McLachlan and de Kretser, 2001). Evidence now suggests that

reactive oxygen species (ROS)-mediated damage to sperm is a

significant contributing pathology in 30–80% of cases (Iwasaki

and Gagnon, 1992; Zini et al., 1993; Ochsendorf, 1994; Shekarriz

et al., 1995a, b; Agarwal et al., 2006a). ROS, defined as including

oxygen ions, free radicals and peroxides, cause infertility by two

principal mechanisms. First, ROS damage the sperm membrane

which in turn reduces the sperm’s motility and ability to fuse

with the oocyte. Secondly, ROS directly damage sperm DNA, com-

promising the paternal genomic contribution to the embryo. Despite

the common association between compromised sperm quality and

oxidative damage, men are rarely screened for oxidative stress

nor treated for this condition. Instead they are usually offered

‘mechanical’ treatments such as intracytoplasmic sperm injection

(IVF-ICSI) or intrauterine insemination (IUI). This is less than

optimal as oxidative damage to sperm DNA is not directly amelio-

rated by either IVF-ICSI or IUI treatment. In addition, direct treat-

ment of oxidative stress may allow for natural conception, thereby

conserving scarce medical resources. This review will provide an

overview of who is at risk of oxidative stress, the mechanisms

by which oxidative stress produces infertility and the methods

available for its diagnosis and treatment.

Overview of oxidative stress biochemistry

ROS are products of normal cellular metabolism. Most of the

body’s energy is produced by the enzymatically controlled reac-

tion of oxygen with hydrogen in oxidative phosphorylation

occurring within the mitochondria during oxidative metabolism.

During this enzymatic reduction of oxygen to produce energy,

free radicals are formed (Valko et al., 2007). A free radical is

defined as an oxygen molecule containing one or more unpaired

electrons in atomic or molecular orbitals. The addition of one

electron to dioxygen (O2) forms the superoxide anion radical

(O2
†2), the primary form of ROS. This superoxide anion can

then be directly or indirectly (enzymatic, metal catalyzed) con-

verted to secondary ROS such as the hydroxyl radical (†OH),

peroxyl radical (ROO†) or hydrogen peroxide (H2O2). The

terms free radical and ROS are commonly used in an inter-

changeable manner, despite the fact that not all ROS are free

radicals (Cheeseman and Slater, 1993). For example, hydrogen

peroxide (H2O2) is considered a ROS but it is not a free

radical since it does not contain unpaired electrons. In addition,

there is a sub-class of free radicals derived from nitrogen which

includes nitrous oxide, peroxynitrite, nitroxyl anion and peroxy-

nitrous acid. Free radicals seek to participate in chemical reac-

tions that relieve them of their unpaired electron, resulting in

the oxidation of lipids in membranes, amino acids in proteins

and carbohydrates within nucleic acids (Ochsendorf, 1999).
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Within semen there are two principal sources of production of

free radicals; leukocytes and sperm. The vast majority of semen

specimens contain leukocytes, with neutrophils being the predo-

minant leukocyte type (Aitken et al., 1994; Aitken and Baker,

1995). As the production of ROS is one of the principal mechan-

isms by which neutrophils destroy pathogens, it is not surprising

that seminal leukocytes have the potential to cause oxidative stress.

However, a link between the presence of leukocytes in semen

and male oxidative infertility is still under debate (Wolff, 1995).

Several researchers have reported a positive correlation between

seminal leukocyte numbers and ROS production (Aitken et al.,

1994; Whittington et al., 1999; Sharma et al., 2001). However,

other studies have failed to find a significant difference in

seminal leukocyte concentration between fertile and infertile

men (Christiansen et al., 1991; Tomlinson et al., 1993; Aitken

and Baker, 1995; Rodin et al., 2003), and the activation state of

leukocytes must also play an important role in determining final

ROS output. This is supported by the observation of a positive cor-

relation between seminal ROS production and pro-inflammatory

seminal plasma cytokines such as interleukin IL-6 (Camejo

et al., 2001; Nandipati et al., 2005), IL-8 (Rajasekaran et al.,

1995; Martinez et al., 2007) and tumour necrosis factor TNFa

(Sanocka et al., 2003; Martinez et al., 2007).

Every human ejaculate contains leukocytes which make the

quantification of spermatozoa-specific ROS production more

complex. However, sperm isolation techniques have been used

to confirm that spermatozoa themselves are responsible for some

ROS generation, not just contaminating seminal leukocytes

(Baker et al., 2003). Separation of sperm from seminal leukocytes

using density-gradient centrifugation has shown the ‘sperm frac-

tion’ to produce significant ROS. As this fraction may still

contain a very low number of leukocytes, experiments have

been conducted where leukocytes are further depleted using mag-

netic beads coated with leukocyte-specific CD45 antibodies

(Aitken et al., 1996). After removing all detectable leukocyte con-

tamination, ROS production can still be recorded, confirming the

ability of sperm to generate ROS. The relative importance of

sperm and leukocyte production of ROS varies between individ-

uals but can be estimated using the leukocyte specific activator,

N-formyl-methionine-leucine-phenylalanine (FMLP).

The ability of sperm to produce ROS inversely correlates with

their maturational state. During spermatogenesis there is a loss

of cytoplasm to allow the sperm to form its condensed, elongated

form. Immature teratozoospermic sperm are often characterized

by the presence of excess cytoplasmic residues in the mid-piece.

These residues are rich in the enzyme glucose-6-phosphate dehy-

drogenase, an enzyme which controls the rate of glucose flux and

intracellular production of b-nicotinamide adenine dinucleotide

phosphate (NADPH) through the hexose monophosphate shunt.

NADPH is used to fuel the generation of ROS via NADPH

oxidase located within the sperm membrane (Gomez et al.,

1996; Fisher and Aitken, 1997; Said et al., 2005). As a result, ter-

atozoospermic sperm produce increased amounts of ROS com-

pared with morphologically normal sperm.

The existence of NADPH oxidase activity within sperm was

questioned when addition of NADPH was unable to elicit any pro-

duction of the superoxide anion measured by electron paramag-

netic resonance spectroscopy, a very sensitive and specific assay

for the superoxide anion (Richer and Ford, 2001). However,

since then the presence of a calcium-dependant NADPH oxidase

called NOX 5 has been confirmed within sperm (Banfi et al.,

2001; Armstrong et al., 2002; Sabeur and Ball, 2007). This sperm-

specific NADPH oxidase (NOX 5) is reported to be quite distinct

from leukocyte NADPH oxidase, with NOX 5 activity not being

controlled by protein kinase C as occurs in the leukocyte

(Armstrong et al., 2002). Whether NOX 5 is over expressed in

spermatozoa of patients exhibiting infertility associated with

oxidative stress is presently unknown.

The relative importance of leukocytes and sperm in the

aetiology of oxidative stress is currently under debate. The rate

of production of ROS by leukocytes is reported to be 1000 times

higher than that of spermatozoa at capacitation (Plante et al.,

1994), making leukocytes the likely dominant producer of

seminal ROS. When seminal ROS production is divided into

that produced by the sperm themselves (intrinsic ROS) and that

made by the leukocytes (extrinsic), an interesting observation is

seen (Henkel et al., 2005). While both intrinsic and extrinsic

ROS production is negatively correlated with sperm DNA integ-

rity, the relationship is significantly stronger for intrinsic ROS pro-

duction. This suggests that while leukocytes produce more ROS

than sperm on a per cell basis, the close proximity between intrin-

sic ROS production and sperm DNA makes intrinsic ROS pro-

duction a more important variable in terms of fertility potential.

The human body has developed several antioxidant strategies to

protect itself from ROS damage. This allows for normal oxidative

metabolism to occur without damaging the cells, while still allow-

ing for normal ROS-mediated cellular responses such as destruc-

tion of infectious pathogens and intracellular signalling (Valko

et al., 2007). Oxidative stress occurs when the production of

ROS overwhelms the antioxidant defense mechanisms leading to

cellular damage. Seminal plasma and sperm themselves are well

endowed with an array of protective antioxidants (Fujii et al.,

2003; Garrido et al., 2004a). Superoxide dismutase (SOD) and cat-

alase are enzymatic antioxidants which inactivate the superoxide

anion (O†
2

2) and peroxide (H2O2) radicals by converting them

into water and oxygen. SOD is present within both sperm and

seminal plasma (Mennella and Jones, 1980; Zini et al., 1993).

The addition of SOD to sperm in culture has been confirmed to

protect them from oxidative attack (Kobayashi et al., 1991).

While some investigators have reported minor reductions in

seminal plasma SOD activity in infertile men (Alkan et al.,

1997; Sanocka et al., 1997), many have not (Miesel et al., 1997;

Zini et al., 2000; Hsieh et al., 2002). However, the majority of evi-

dence does support a link between deficient seminal catalase

activity and male infertility (Jeulin et al., 1989; Alkan et al.,

1997; Miesel et al., 1997; Sanocka et al., 1997; Zini et al.,

2000). Glutathione peroxidase (GPX) is the final member of the

seminal enzymatic antioxidant triad. GPX consists of a family of

antioxidants (GPX1-5) that are involved in the reduction of hydro-

peroxides using glutathione as an electron donor. The GPXs are

located within the testis, prostate, seminal vesicles, vas deferens,

epididymis, seminal plasma and spermatozoa themselves

(reviewed by Vernet et al., 2004). GPX must play an important

protective role against oxidative attack since its specific inhibition

in vitro using mercaptosuccinate leads to a large increase in sperm

lipid peroxidation (Twigg et al., 1998). Male factor infertility has

been linked with a reduction in seminal plasma (Giannattasio

et al., 2002) and spermatozoa (Garrido et al., 2004b) GPX activity,
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further supporting an important role for this enzyme in male ferti-

lity. In addition, men exhibiting leukospermia-associated oxi-

dative stress have been reported to have significantly reduced

GPX activity within their spermatozoa (Therond et al., 1996).

Finally, the continued activity of GPX depends on the regeneration

of reduced glutathione by glutathione reductase (GTR). Selective

inhibition of GTR reduces the availability of reduced glutathione

for maintaining GPX activity, thereby exposing sperm to oxidative

stress (Williams and Ford, 2004). The coordinated activity of

GPX, GTR and glutathione clearly play a pivotal role in

protecting sperm from oxidative attack.

The non-enzymatic antioxidants present within semen include

ascorbic acid (Vitamin C), a-tocopherol (Vitamin E), glutathione,

amino acids (taurine, hypotaurine), albumin, carnitine, caroten-

oids, flavenoids, urate and prostasomes. These agents principally

act by directly neutralizing free radical activity chemically.

However, they also provide protection against free radical attack

by two other mechanisms. Albumin can intercept free radicals

by becoming oxidized itself, thereby sparing sperm from attack

(Twigg et al., 1998). Alternatively, extracellular organelles (pros-

tasomes) secreted by the prostate have been shown to fuse with

leukocytes within semen and reduce their production of free rad-

icals (Skibinski et al., 1992; Saez et al., 1998). A substantial

number of researchers have reported a significant reduction

in non-enzymatic antioxidant activity in seminal plasma of infer-

tile compared with fertile men (Fraga et al., 1991; Fraga

et al., 1996; Smith et al., 1996; Therond et al., 1996;

Lewis et al., 1997; Gurbuz et al., 2003; Koca et al., 2003;

Mostafa et al., 2006; Song et al., 2006).

Antioxidants contained within seminal plasma are obviously

helpful for preventing sperm oxidative attack following ejacula-

tion. However, during spermatogenesis and epididymal storage,

the sperm are not in contact with seminal plasma antioxidants

and must rely on epididymal/testicular antioxidants and their

own intrinsic antioxidant capacity for protection. Sperm are there-

fore vulnerable to oxidative damage during epididymal transit,

especially when there is epididymal inflammation such as male

genital tract infection. In addition, testicular biopsies from men

with varicocele-associated oxidative stress have shown an increase

in oxidative DNA damage within spermatogonia and spermato-

cytes (Ishikawa et al., 2007). Therefore, while seminal plasma

antioxidants may help minimize ejaculated sperm oxidative

stress, they have no capacity to prevent oxidative damage initiated

‘up stream’ at the level of the testis and epididymis.

Seminal free radicals—friend or foe?

Sperm were the first type of cell reported to produce free radicals.

In this pioneering report, MacLeod (1943) noted that incubation of

sperm under conditions of high oxygen tension lead to a rapid loss

of their motility. The addition of the antioxidant catalase to the

medium preserved sperm motility, prompting MacLeod to

suggest that sperm must produce hydrogen peroxide during

normal oxidative metabolism. Since this publication, it has

evolved that three inter-related mechanisms account for oxidative

stress-mediated male infertility—impaired motility, impaired

fertilization and oxidative DNA damage.

The underlying pathology behind free radicals ability to reduce

sperm motility was first reported by Jones et al. (1979). They

reported that ROS-induced peroxidation of the sperm membrane

decreasing its flexibility and therefore tail motion. Sperm mem-

branes are vulnerable to this type of damage as they contain

large amounts of unsaturated fatty acids. Direct ROS damage to

mitochondria, decreasing energy availability, may also impede

sperm motility (de Lamirande and Gagnon, 1992; de Lamirande

et al., 1997, 1998). By either mechanism, oxidative stress

impairs sperm motility and will result in less sperm reaching the

oocyte for fertilization (Whittington et al., 1999; Kao et al., 2007).

Low level production of free radicals by sperm plays a positive

role in preparation for fertilization (capacitation). Hydrogen per-

oxide stimulates the acrosome reaction and sperm hyperactivation

(de Lamirande and Gagnon, 1993), thereby assisting the sperm’s

transit through the cumulus and zona pellucida. Low concentrations

of hydrogen peroxide also cause tyrosine phosphorylation, which

augments sperm membrane binding to the zona pellucida ZP-3

protein (Aitken et al., 1995b), ultimately boosting sperm–oocyte

fusion (Aitken et al., 1998). However, high levels of ROS pro-

duction lead to peroxidation of the sperm acrosomal membrane

and diminished acrosin activity (Zalata et al., 2004), and impaired

sperm–oocyte fusion (Aitken et al., 1989; Ichikawa et al., 1999;

Saleh et al., 2003a, b; Zorn et al., 2003a; Jedrzejczak et al., 2005).

Free radicals have the ability to directly damage sperm DNA by

attacking the purine and pyrimidine bases and the deoxyribose

backbone. Normally, sperm DNA is tightly packaged by prota-

mines protecting it from free radical attack. However, infertile

men often exhibit deficient protamination, leaving the sperm

DNA particularly vulnerable to ROS attack (Oliva, 2006). Alter-

natively, free radicals can initiate apoptosis within the sperm,

leading to caspase-mediated enzymatic degradation of the DNA

(Kemal Duru et al., 2000; Wang et al., 2003; Moustafa et al.,

2004; Villegas et al., 2005). Several investigators (Kodama

et al., 1997; Aitken et al., 1998; Saleh et al., 2002b; Oger et al.,

2003; Wang et al., 2003; Henkel et al., 2005; Kao et al., 2007)

have now confirmed the link between oxidative stress and sperm

DNA damage using various techniques such as terminal deoxynu-

cleotidyl transferase-mediated dUTP nick-end labeling (TUNEL),

sperm chromatin structure assay (SCSA) and measurement of

the byproduct of DNA oxidation, 8-hydroxydeoxyguanosine

(8-OHdG). Furthermore, two groups have now correlated

increased sperm oxidative DNA damage with poor blastocyst for-

mation in vitro (Zorn et al., 2003a; Meseguer et al., 2006, 2007).

Damaged paternal DNA is recognized to be a significant cause for

poor blastocyst development (Seli et al., 2004). Finally, a large

prospective study of 225 couples planning their first pregnancy

found a strong inverse relationship between seminal 8-OHdG con-

centration and monthly natural fecundity (Loft et al., 2003).

During natural conception or routine IVF, oxidative damage to

the sperm membrane will normally block fertilization, preventing

the damaged paternal DNA from creating an embryo. However,

during IVF-ICSI this natural barrier to fertilization is lost and

sperm containing significantly damaged DNA can still achieve fer-

tilization following microinjection (Zorn et al., 2003a). While

many of these embryos will ultimately fail at the blastocyst or

early fetal stage, there is the potential for a child to be born with

damaged paternal derived DNA. The consequences of this are as

yet unknown but it has been suggested to include the initiation

of genetic defects and childhood cancer (Aitken and Krausz,

2001; Aitken et al., 2003).
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Origins of oxidative stress

The origins of sperm oxidative stress are summarized in Fig. 1.

While pathologies such as genitourinary tract infection and varico-

cele are well established causes of oxidative stress, others such as

hyper-homocysteinaemia and diabetes are only now just becoming

recognized as possible causes. It is hoped that this review will

stimulate further research in these less well established potential

causes of male oxidative infertility.

Idiopathic

Idiopathic male factor infertility has been linked with oxidative

stress by several research groups. One of the principal causes of

this association is the observation that morphologically abnormal

sperm have an increased capacity to generate ROS, but also a

reduced antioxidant capacity (Gomez et al., 1996; Garrido et al.,

2004b; Said et al., 2004; Said et al., 2005). As approximately

one-third of infertile men exhibit teratozoospermia (Thonneau

et al., 1991), it is not surprising that sperm oxidative stress is com-

monly identified in the idiopathic infertile male population. Even

men with normozoospermic idiopathic infertility exhibit signifi-

cantly higher seminal ROS production and lower antioxidant

capacity than fertile men (Pasqualotto et al., 2001; Agarwal

et al., 2006b), for as yet unknown reasons.

Iatrogenic

The use of assisted reproductive technologies (ART) has the

potential to exacerbate sperm oxidative stress. During IVF and

IUI treatment semen is centrifuged to separate sperm from

seminal plasma. This exacerbates oxidative stress as centrifu-

gation increases sperm ROS production many fold (Iwasaki and

Gagnon, 1992; Shekarriz et al., 1995a, b), while removing

sperm from protective antioxidants within seminal plasma (Potts

et al., 2000a, b). In addition cryopreservation of sperm, another

commonly used technique in ART, is associated with an increase

in sperm oxidative stress (Watson, 2000).

Drugs such as the chemotherapy agent cyclophosphamide

have been linked with sperm oxidative stress. Administration of

cyclophosphamide to animals is reported to increase testicular

malondialdehyde (MDA) levels and produce a fall in testicular

catalase, implying the presence of oxidative stress (Das et al.,

2002; Ghosh et al., 2002). Drugs such as aspirin and paracetamol

(acetaminophen) can also produce oxidative stress by increasing

cytochrome P450 activity, thereby boosting ROS generation

(Agarwal and Said, 2005).

Lifestyle

Smoking results in a 48% increase in seminal leukocyte concen-

trations and a 107% increase in seminal ROS levels (Saleh

et al., 2002a). Smokers have decreased levels of seminal plasma

antioxidants such as Vitamin E (Fraga et al., 1996) and Vitamin C

(Mostafa et al., 2006), placing their sperm at additional risk of

oxidative damage. This has been confirmed by the finding of a sig-

nificant increase in levels of 8-OHdG within smoker’s seminal

plasma (Fraga et al., 1996).

Dietary deficiencies have been linked with sperm oxidative

damage by several research groups. The Age and Genetic

Effects in Sperm (AGES) study examined the self-reported

dietary intake of various antioxidants and nutrients (vitamins C

and E, b-carotene, folate and zinc) in a group of 97 healthy non-

smokers and correlated this with sperm quality (Eskenazi et al.,

2005). This study did observe a significant correlation between

vitamin C intake and sperm concentration and between vitamin

E intake and total progressively motile sperm. This is also consist-

ent with earlier reports of a significant link between seminal

plasma vitamin E levels and an increase in percentage of motile

sperm (Therond et al., 1996). However, the AGES study was

unable to confirm a link between low intake of antioxidants and

sperm DNA damage (Silver et al., 2005). This was surprising

given that other researchers had linked low seminal plasma

vitamin C levels with increased sperm DNA damage (Fraga

et al., 1991; Song et al., 2006). It is possible that levels of individ-

ual antioxidants within seminal fluids may more accurately reflect

biological effect than self-reported dietary intake as different food

sources and preparation techniques can vastly modify antioxidant

intake. Alternatively, differences in the populations studied may

explain the discrepant results. Song et al. (2006) correlated

sperm DNA damage with dietary antioxidant intake in infertile

men, while Silver et al. (2005) and Fraga et al. (1991) examined

this relationship in healthy presumed fertile patients. Fertile men

with low levels of oxidative attack may not be as dependant on

seminal antioxidants for protection of their sperm DNA integrity.

Therefore, a dietary deficiency in antioxidants may not lead to

sperm oxidative DNA damage in this fertile cohort.

Excessive alcohol consumption causes an increase in systemic

oxidative stress as ethanol stimulates the production of ROS,

while many alcohol abusers have diets deficient in protective anti-

oxidants (Wu and Cederbaum, 2003; Koch et al., 2004). A study of

46 alcoholic men of reproductive age has suggested the presence

of oxidative stress within the testicle by reporting a significant

reduction in plasma testosterone, increase in serum lipid peroxi-

dation byproducts and a drop in antioxidants (Maneesh et al.,

2006). However, no study to date has directly examined the link

between alcohol intake and sperm oxidative damage.

Extremes of exercise activity, at both ends of the spectrum, have

been linked with oxidative stress. It is not surprising that high

impact exercise is linked with oxidative stress since muscle

aerobic metabolism creates a large amount of ROS (Peake et al.,

Figure 1: The oxidative stress balance.
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2007). In a rodent model, increasing levels of exercise are linked

with a reduction in sperm count and motility and a corresponding

increase in biochemical signs of testicular oxidative stress (Manna

et al., 2004). Conversely, obesity produces oxidative stress as

adipose tissue releases pro-inflammatory cytokines that increase leu-

kocyte production of ROS (Singer and Granger, 2007). Furthermore,

accumulation of adipose tissue within the groin region results in

heating of the testicle which has been linked with oxidative stress

and reduced sperm quality (Banks et al., 2005; Ishii et al., 2005;

Perez-Crespo et al., 2007).

Psychological stress produces a reduction in semen quality;

with the underlying mechanism previously felt to be related to a

central impairment of gonadotrophin drive (Fenster et al., 1997).

However, recent prospective studies have linked a period of

psychological stress with a reduction in sperm quality mediated

by an increase in seminal plasma ROS generation and a reduction

in antioxidant protection (Eskiocak et al., 2005, 2006).

Several studies have reported that sperm DNA damage

increases with advancing age in both fertile (Wyrobek et al.,

2006) and infertile men (Singh et al., 2003; Moskovtsev et al.,

2006). It is possible that an increase in oxidative sperm DNA

damage is the underlying pathology. A large observational study

has confirmed that systemic oxidative stress increases with age

(Junqueira et al., 2004). Animal studies using the Brown

Norway rat, an established model of male reproductive aging,

confirm that sperm from older animals produce more free radicals

than from young animals and have a reduced enzymatic antioxi-

dant activity, resulting in an increase in ROS-mediated sperm

DNA damage (Zubkova et al., 2005; Weir and Robaire, 2007).

Environmental

Phthalates are chemicals used as a plastics softener and are con-

tained in a wide range of food packaging and personal care pro-

ducts. Exposure to phthalates can occur via dietary consumption,

dermal absorption or inhalation and has been linked with impaired

spermatogenesis and increased sperm DNA damage (Agarwal

et al., 1985; Srivastava et al., 1990; Kasahara et al., 2002;

Hauser et al., 2007). Oral administration of phalate esters to rats

is reported to increase the generation of ROS within the testis

and a concomitant decrease in antioxidant levels, culminating in

impaired spermatogenesis (Lee et al., 2007).

Several environmental pollutants have been linked with testicu-

lar oxidative stress. Pesticides such as lindane (Chitra et al., 2001),

methoxychlor (Latchoumycandane et al., 2002) and the herbicide

dioxin-TCDD (Latchoumycandane et al., 2003) have all been

linked with testicular oxidative stress in rodent models. The com-

monly used preservative sulfur dioxide has also been shown to

produce testicular oxidative stress in laboratory animals (Meng

and Bai, 2004). Air pollutants such as diesel particulate matter

act as potent stimuli for leukocyte ROS generation (Gonzalez-

Flecha, 2004; Alaghmand and Blough, 2007). While no study

has directly linked airborne pollutants with testicular oxidative

stress, it is possible that this oxidative insult is responsible for

the increase in sperm DNA damage seen following periods of air-

borne pollution (Rubes et al., 2005).

Heavy metal exposure has been conclusively linked with sperm

oxidative damage. Both cadmium and lead are linked with an

increase in testicular oxidative stress (Hsu and Guo, 2002;

Acharya et al., 2003) and a resultant increase in sperm DNA

oxidation (Xu et al., 2003; Naha and Chowdhury, 2006). The

increase in infertility and miscarriage observed in the partners of

welders and battery/paint factory workers (Gennart et al., 1992;

Bonde, 1993) may be due to oxidative damage to sperm DNA

initiated by the inhalation of metal fumes.

Infection

Genitourinary tract infection

Up to 50% of men will experience prostatitis at some point in their

lives, with prostatitis becoming chronic in 10% of men (Schaeffer,

2003). Bacteria responsible for prostate infection may originate

from the urinary tract or can be sexually transmitted (Fraczek

and Kurpisz, 2007; Fraczek et al., 2008). Typical non-sexually-

transmitted pathogens include Streptococci (S. viridans and

S. pyogens), coagulase-negative Staphylococci (S. epidermidis,

S. haemolyticus), gram-negative bacteria (E. coli, Proteus

mirabilis) and atypical mycoplasma strains (Ureaplasma urealy-

ticum, Mycoplasma hominis). All of these pathogens will create

an acute inflammatory response with an influx of leukocytes

into the genital tract and a resulting increase in ROS production

(Mazzilli et al., 1994; Depuydt et al., 1996; Ochsendorf, 1999;

Potts et al., 2000a, b). Men prone to recurrent genitourinary

tract infections, such as paraplegics, have been confirmed to

have high degrees of sperm oxidative pathology (Padron et al.,

1997; Brackett et al., 2008). Current or past Chlamydia infection

has also been linked with an increase in oxidative damage to

sperm (Segnini et al., 2003).

Viral infections may also initiate oxidative damage to sperm.

The link between common viral pathogens such as cytomegalo-

virus, herpes simplex virus (HSV), Epstein-Barr virus and oxi-

dative infertility has been examined by several groups. Only

HSV appears to have a possible role in the initiation of oxidative

damage to sperm. Herpes simplex DNA is found in 4–50% of

infertile men’s semen (Kapranos et al., 2003, Bezold et al.,

2007), with IgM antibodies towards HSV being associated with

a 10-fold increase in the rate of leukospermia (Krause et al.,

2002, 2003). Given the well recognized link between leukosper-

mia and seminal ROS levels, together with the observation of a

reduction in sperm motility in men positive for seminal HSV

DNA (Kapranos et al., 2003), it is likely that HSV is a viral patho-

gen involved in oxidative stress.

Systemic infection

Several chronic systemic infections have been linked with

increased oxidative stress throughout the body. Human immuno-

deficiency virus (HIV) infection is associated with an increase in

leukocyte number and activation within semen (Umapathy et al.,

2001). Hepatitis B and C infection has also been correlated with

significant hepatic oxidative stress (Chen and Siddiqui, 2007;

Seronello et al., 2007). At present it is unknown if this oxidative

stress extends to the semen, but impaired sperm motility seen in

hepatitis B and C patients (Durazzo et al., 2006; Vicari et al.,

2006), makes this possible. Finally, chronic infections such as

tuberculosis (Srinivasan et al., 2004), leprosy (Vijayaraghavan

et al., 2005), malaria (Guha et al., 2006) and Chagas disease

(Macao et al., 2007) have all been linked with elevated degrees

of systemic oxidative stress. While no study has directly linked

these chronic infectious diseases with sperm oxidative stress, it is
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unlikely that the male reproductive tract would be spared from this

systemic oxidative insult.

Autoimmune/inflammatory

Chronic non-bacterial prostatitis (NIH Category III) is a chronic

inflammation of the prostate in the absence of infection and has

been reported by several groups to be associated with considerably

elevated oxidative stress within semen (Pasqualotto et al., 2000;

Shahed and Shoskes, 2000; Potts and Pasqualitis, 2003). Chronic

non-bacterial prostatitis accounts for in excess of 90% of all cases

and effects 10% of men (Schaeffer, 2003). In the majority of

cases of chronic non-bacterial prostatitis it is reported that an

adverse autoimmune response to seminal or prostate antigens is

responsible for the pathology, leading to an increase in

pro-inflammatory cytokines and activated ROS producing leuko-

cytes within the semen (Batstone et al., 2002; Motrich et al.,

2005; Motrich et al., 2007). While the exact trigger for this response

is unknown, one report has linked a polymorphism of the TH-2

cytokine IL-10 with chronic non-bacteria prostatitis (Shoskes

et al., 2002). A lack of this Th-2 cytokine may tip the immune

balance towards the Th-1 direction leading to the generation of T

lymphocytes reactive against prostate antigens. These T cells will

liberate cytokines such as IFN-g, TNF-a and IL-1b that stimulate

chemotaxis and activation of leukocytes, leading to increased

seminal oxidative stress (Motrich et al., 2005). It is therefore not

surprising to see the majority of studies linking chronic non-

bacterial prostatitis with a significant reduction in sperm density,

motility, morphology and membrane integrity (Christiansen et al.,

1991; Leib et al., 1994; Krieger et al., 1996; Engeler et al., 2003;

Motrich et al., 2005; Henkel et al., 2006); although this is refuted

by some groups (Pasqualotto et al., 2000; Ludwig et al., 2003).

Oxidative stress has been proposed as a significant cause for

infertility after vasectomy reversal. It is believed that vasectomy

disrupts the normal blood-testis barrier, leading to a loss of

immune privilege and activation of immune responses against

sperm (Filippini et al., 2001). Several studies have documented

an increase in seminal leukocytes, pro-inflammatory cytokines

and free radical production within semen following vasectomy

reversal (Shapiro et al., 1998; Kolettis et al., 1999; Sharma

et al., 1999; Nandipati et al., 2005).

Testicular

Oxidative stress is now widely believed to be the principal underlying

pathology linking varicocele with male infertility (Hendin et al.,

1999; Barbieri et al., 1999; Saleh et al., 2003b; Nallella

et al., 2004; Smith et al., 2006; Agarwal et al., 2006c; Ishikawa

et al., 2007; Smith et al., 2007). The increase in varicocele-related

ROS production is strongly correlated with a reduction in sperm

DNA integrity when assessed by either TUNEL (Smith et al.,

2006) or 8-hydroxy-20-deoxyguanosine DNA oxidative metabolite

levels (Chen et al., 2004).

Cryptorchidism is a common cause for male factor infertility in

which the primary pathology is hypo-spermatogenesis due to

deficient maturation of gonocytes to type A spermatogonia (Huff

et al., 1991). However, recently it has been reported that men with

cryptorchidism surgically treated with orchidoplexy early in life

still have markedly elevated sperm ROS production and DNA frag-

mentation compared with fertile controls (Smith et al., 2007).

Torsion of the spermatic cord has long been recognized as a

cause of male infertility, even when this torsion is unilateral. It is

now generally accepted that oxidative stress related to ischemia-

reperfusion injury is the underlying cause of damage to both the

torted and contra-lateral testis. A prolonged period of ischemia

followed by surgical or spontaneous restoration of blood flow

leads to an influx of activated leukocytes into both testis (Turner

et al., 2004) and a consequent increase in generation of free radicals

(Filho et al., 2004). Oxidative stress then leads to necrosis of the

germinal cells with resulting subfertility or infertility.

Chronic disease

Diabetes has long been recognized to impair male fertility by

interfering with both spermatogenesis and erectile function.

Recently it has been reported that diabetic men have significantly

higher levels of sperm DNA fragmentation than normal controls

(Agbaje et al., 2007). While this study did not directly measure

oxidative stress, the authors proposed that the most likely mechan-

ism for the observed increase in sperm DNA damage was an

increase in oxidative stress as this is now recognized as a key path-

ology underlying many chronic complications of diabetes. In

support, studies using the Streptozotocin-induced diabetic rat

model have found a significant increase in testicular oxidative

stress within 6 weeks of initiation of the diabetic state (Shrilatha

and Muralidhara, 2007).

Chronic inflammation and oxidative stress are highly prevalent

in patients with chronic kidney disease and end-stage renal disease

(Oberg et al., 2004). Surprisingly, even when uraemia is reversed

by haemodialysis, a persisting state of chronic inflammation and

oxidative stress persists (Danielski et al., 2003; Pupim et al.,

2004). Furthermore, renal transplant patients with stable renal

function and no obvious signs of immune rejection of their graft

also have elevated levels of oxidative stress (Moreno et al., 2005).

Patients with haemaglobinopathies such as beta-thalassemia

major have high degrees of systemic oxidative stress (Livrea

et al., 1996), with this oxidative damage confirmed to involve

sperm (Carpino et al., 2004). The likely cause of oxidative stress

is iron overload from multiple blood transfusions. Iron is a

potent pro-oxidant capable of redox cycling when not safely

bound to transferrin in the blood or stored as ferritin in tissue.

The toxic accumulation of homocysteine may cause reproduc-

tive dysfunction and oxidative stress within the testis (Forges

et al., 2007; Sonmez et al., 2007). Hyper-homocysteinaemia

usually occurs due to suboptimal re-methylation of homocysteine

to methionine by the enzyme methyl tetrahydrofolate reductatse

(MTHFR) caused by a dietary deficiency of folate or a single-

nucleotide polymorphism (SNP) in the MTHFR gene (Selhub,

1999; Matthews, 2002). Several investigators have reported that

SNPs (C677T and others) in the MTHFR gene are more commonly

found in the infertile men (Bezold et al., 2001; Park et al., 2005;

Lee et al., 2006; Zhou-Cun et al., 2007), placing these men at

increased risk of homocysteine-induced oxidative stress.

Laboratory identification of oxidative stress-related male
infertility

One of the main reasons why screening for oxidative stress is not

routine in andrology laboratories is the cost and complexity of

testing and the lack of a single standardized measure of oxidative
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stress. At present there are over 30 assays of oxidative stress

(Ochsendorf, 1999), broadly divided into three different types.

This review will focus on the most popular and clinically useful

assays currently being performed.

Direct methods

These assays measure damage created by excess free radicals

against the sperm lipid membrane or DNA. As oxidative stress

is the result of an in balance between ROS production and total

antioxidant capacity (TAC), direct tests reflect the net biological

effect between these two opposing forces.

The most widely used method of assessing sperm membrane

peroxidation is the measurement of MDA levels in sperm or

seminal plasma with the thiobarbituric acid assay. MDA levels

in sperm are quite low and therefore require the use of sensitive

high-pressure liquid chromatography (HPLC) equipment (Li et al.,

2004; Shang et al., 2004) or the use of iron-based promoters and

spectrofluometry measurement (Aitken et al., 1993). Seminal

plasma levels of MDA are 5–10-fold higher than sperm, making

measurement on standard spectrophotometers possible (Sanocka

et al., 1997; Nakamura et al., 2002; Tavilani et al., 2005).

Measurement of MDA appears to be of some clinical relevance

since its concentration within both seminal plasma and sperm is

elevated in infertile men with excess ROS production, compared

with fertile controls or normozoospermic individuals (Sanocka

et al., 1997; Nakamura et al., 2002; Tavilani et al., 2005; Hsieh

et al., 2006). Furthermore, in vitro impairment of motility,

sperm DNA integrity and sperm–oocyte fusion capacity by ROS

is accompanied by an increase in MDA concentration (Aitken

et al., 1989, 1993). Other direct tests of sperm membrane lipid per-

oxidation such as measurement of the isoprostane 8-Iso-PGF2a

(Khosrowbeygi and Zarghami, 2007) and the c11-BODIPY

assay (Aitken et al., 2007; Kao et al., 2007) are showing

promise but are not yet in common usage.

It is well recognized that oxidative stress is one of the major

causes of sperm DNA damage (Aitken et al., 1998; Oger et al.,

2003; Saleh et al., 2003a, b). However, measurement of sperm

DNA damage by TUNEL or SCSA is an imperfect assessment

of oxidative stress as sperm DNA can be damaged by non-

oxidative mechanisms such as aberrant apoptosis and incomplete

sperm protamination (Ozmen et al., 2007). The best direct assess-

ment of sperm DNA oxidative damage is the measurement of the

oxidized deoxynucleoside, 8-oxo-7,8-dihydro 20 deoxyguanosine

(8-OHdG). This can be measured in sperm or seminal plasma by

HPLC (Fraga et al., 1991; Loft et al., 2003), enzyme-linked immu-

noabsorbent assay (Nakamura et al., 2002) or directly within

sperm using immunoflurorescence (Kao et al., 2007). Since a

large prospective study has reported that chances of natural

conception is inversely correlated with sperm 8-OHdG levels

(Loft et al., 2003), measurement of this direct marker of sperm

oxidative stress appears to have some clinical utility.

Indirect methods

Chemoluminescence assays using either Luminol or Lucigenin are

the most commonly described technique to detect ROS production

within semen. These probes are very sensitive and have the advan-

tage of relatively well established reported ranges for both the

fertile and infertile population (Ochsendorf et al., 1994; Williams

and Ford, 2005; Athayde et al., 2007). However, general uptake by

clinical andrology laboratories has been hampered by expensive

equipment (luminometer) and difficulties with quality control

created by assay confounders such as incubation time, leukocyte

contamination and presence of seminal plasma contamination

(Kobayashi et al., 2001; Aitken et al., 2004). Furthermore,

Lucigenin has been shown to undergo auto-oxidization which

itself leads to the production of superoxide anions (Liochev and

Fridovich, 1997). This makes chemoluminescent probes such as

Lucigenin less than ideal reagents for measurement of sperm

superoxide anion production. A simpler alternative may be light

microscopy quantification of nitroblue tetrazolium (NBT) activity.

NBT is a yellow water soluble compound that reacts with superox-

ide anions within cells to produce a blue pigment diformazan. The

amount of diformazan crystals seen within a leukocyte or sperm

reflects its superoxide anion production. The NBT assay has

been shown to correlate well with traditional chemoluminescence

techniques (Esfandiari et al., 2003) but has two distinct advan-

tages. First, the NBT assay is inexpensive to set up as it only

requires a light microscope. Secondly, the NBT assay can dis-

criminate between production of ROS by sperm and leukocytes

without the need for addition of activating peptides (FMLP)

used in chemoluminescence assays (WHO manual, 1999).

Measurement of TAC within semen can be conducted in a variety

of ways. The ability of seminal plasma to inhibit chemolumines-

cence elicited by a constant source of ROS (horse-radish peroxidase)

is a commonly used technique. The TAC is usually quantified

against a Vitamin E analogue (Trolox) and expressed as a

ROS-TAC score (Sharma et al., 1999). However, colourimetry tech-

niques based on the colour change of ABTS (2,20-

azinobis3-ethylbenzo-thiazoline-6-sulphate) are now becoming

more popular as they are cheaper and easier to perform (Said

et al., 2003; Erel, 2004). The reduced ABTS molecule is oxidized

to ABTSþ using hydrogen peroxide and a peroxidase to form a rela-

tively stable blue-green colour measured at 600 nm with a standard

spectrophotometer. Antioxidants present within seminal plasma sup-

press this colour change to a degree that is proportional to their con-

centrations. Again the antioxidant activity is quantified using Trolox.

Oxidative stress implied from routine semen analysis

A summary of the routine laboratory test ‘sentinel signs’

suggesting the possible presence of sperm oxidative stress is con-

tained in Table I. While a reduction in any of the sperm parameters

(count, motility, morphology) is more commonly seen in men with

oxidative stress, asthenozoospermia is probably the best surrogate

marker for oxidative stress in a routine semen analysis (Aitken and

Baker, 1995; Aitken et al., 1995a, b; Whittington et al., 1999;

Keskes-Ammar et al., 2003; Kao et al., 2007). A link between

impaired sperm motility and oxidative stress also extends to the

sperm DNA as a recent study has identified a highly significant

correlation between oxidation of sperm DNA and reduced motility

(Kao et al., 2007).

Hyperviscosity of seminal plasma is associated with increased

levels of seminal plasma MDA (Aydemir et al., 2008) and

reduced seminal plasma antioxidant status (Siciliano et al.,

2001), making impaired viscosity a reasonable surrogate marker

of oxidative stress. Infection of the semen with Ureaplasma urea-

lyticum is associated with increased seminal plasma viscosity
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(Wang et al., 2006) and an increase in ROS production (Potts

et al., 2000a, b). It is possible that these infections may damage

the prostate and seminal vesicle, altering the substrates required

for creation of normal semen viscosity.

A large number of round cells within semen may suggest the

presence of oxidative stress as they may represent seminal leuko-

cytes (Sharma et al., 2001). However, round cells may also be

immature sperm rather than leukocytes, so formal identification

of leukocytes requires ancillary tests such as the peroxidase test,

CD45 staining or measurement of seminal elastase (WHO

manual, 1999; Zorn et al., 2003b; Kopa et al., 2005). Finally,

poor sperm membrane integrity assessed by the hypo-osmolar

swelling test has been linked with the presence of sperm oxidative

stress (Dandekar et al., 2002).

Management of oxidative stress related infertility

Once an individual has been identified as having oxidative stress

related infertility, treatment should be aimed at identification

and amelioration of the underlying cause before considering anti-

oxidant treatment. The following paragraphs are the author’s sug-

gestions for investigation and management based on the

underlying causes of oxidative stress outlined in previous para-

graphs. These recommendations are summarized in Table II.

Lifestyle modification

Lifestyle behaviours such as smoking, poor diet, alcohol abuse,

obesity or psychological stress have all been linked with oxidative

stress. While the effectiveness of elimination of these lifestyle trig-

gers for oxidative stress has not been formally tested, it is likely

that making positive lifestyle changes such as a diet high in

fruit/vegetables, maintenance of normal weight and a reduction

in smoking/alcohol intake would have at least some beneficial

effect on sperm health.

Environmental exposures

Exposure to heat, pollution and toxins (heavy metals and plastici-

zers) have all been linked with oxidative stress. Men should be

advised to avoid activities which may heat the scrotum such as

long baths and saunas. Proper ventilation and use of personal pro-

tective equipment at work will hopefully reduce men’s exposure to

chemical and metal vapours linked with oxidative stress.

Treatment of infection/inflammation

Infection of the semen and male accessory sex glands with Chla-

mydia and Ureaplasma has been conclusively linked with an

increase in oxidative stress. As both of these infections are treata-

ble with antibiotics, it makes sense to screen all men with known

oxidative stress for these bacterial pathogens. Two studies have

now confirmed the ability of antibiotic treatment to reduce

sperm oxidative stress and subsequently improve sperm quality

(Omu et al., 1998; Vicari, 2000). One relatively large and well-

conducted study randomized men with Chlamydia or Ureaplasma

infection to either 3 months of antibiotics or no treatment (Vicari,

2000). Compared with the controls, the antibiotic treated group

exhibited a significant fall in seminal leukocytes and ROS pro-

duction at 3 months, an improvement in sperm motility and a sig-

nificant improvement in natural conception (28.2 versus 5.4%,

P ¼ 0.009). A smaller study using only 10 days of antibiotic treat-

ment did not produce any significant decline in seminal leukocyte

count or improvement in motility (Krause et al., 2003). While this

study did not measure ROS production in semen, it is likely that

prolonged courses of antibiotics (3 months) are required to com-

pletely irradiate difficult-to-treat male accessory gland infections

and reverse oxidative pathology.

In addition to antibiotic treatment, non-steroidal anti-

inflammatory (NSAID) drugs may also reduce seminal leukocytes

production of free radicals. In one study men with antibiotic

treated Chlamydia or Ureaplasma infection were randomized to

either a NSAID or carnitine antioxidant and monitored for

improvements in sperm quality over the next 4 months (Vicari

et al., 2002). Those men treated with 2 months of NSAID followed

by 2 months of carnitine had the most significant reduction in

seminal ROS production and improvement in sperm motility/
viability. In addition, a one month course of a COX-2

anti-inflammatory has been shown to significantly reduce sperm

leukocyte count, while improving sperm motility, morphology

and viability (Gambera et al., 2007). It would therefore appear

that a combination of antibiotics followed by a course of

anti-inflammatory medication is the preferred treatment path in

infection related oxidative stress.

Direct treatment of oxidative pathology

Several investigators have reported that surgical treatment of a

varicocoele can reduce seminal ROS levels and improve sperm

DNA integrity (Mostafa et al., 2001; Zini et al., 2005; Hurtado

de Catalfo et al., 2007; Werthman et al., 2007). While the most

Table II. Summary of treatment options in male oxidative infertility.

1. Minimize ‘lifestyle’ triggers of oxidative stress. This may include stopping

smoking, improved diet, losing weight.

2. Minimize environmental exposure to heat, pollutions and toxins.

3. Direct treatment of the underlying stimulus for sperm oxidative stress. For

example, antibiotic treatment of Chlamydia or Mycoplasma infection.

4. Surgery. This would include ligation of a varicocele or the use of

testicular derived sperm during IVF to improve sperm DNA quality.

5. Vitamin and antioxidant supplements, with or without the addition of

anti-inflammatory medications to decrease leukocyte ROS production.

6. Surgical extraction of sperm. If conservative methods such as lifestyle

modification, antioxidant therapy fail use of testicular sperm extraction may

be justified.

7. Optimize laboratory procedures. Minimization of iatrogenic oxidative

stress can be achieved by limiting semen centrifugation times and avoidance

of use of cryo-preserved sperm if possible.

Table I. Sentinel laboratory signs suggesting possible sperm oxidative
stress.

1. Poor sperm motility.

2. Teratozoospermia.

3. High number of round cells (? Leukocytes) in semen.

4. Increased semen viscosity.

5. Poor sperm membrane integrity on hypo-osmolar swelling test (HOST).

6. Poor fertilization on routine IVF.

7. Poor sperm motility after overnight incubation with the oocyte.

8. Poor blastocyst development in the absence of a clear female factor

(advanced maternal age/poor ovarian reserve).
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recent meta-analysis examining the effect of varicocelectomy on

spontaneous conception shows a significant benefit (Marmar

et al., 2007), the Cochrane Database suggests that there is no

benefit (Evers and Collins, 2004). Well-conducted randomized

studies measuring oxidative end-points (sperm lipid peroxidation

and oxidative DNA damage) and pregnancy rates need to be per-

formed before routine use of varicocelectomy can be advocated in

men with oxidative stress. Until these studies become available,

selective ligation of grade II/III varicoceles in men with poor

reproductive outcomes despite oral antioxidant therapy is probably

reasonable practice.

Vitamin and antioxidant supplementation

Elevated homocysteine has been linked with oxidative stress.

The B group vitamins folate, Vitamin B6 and Vitamin B12 are

known to increase the enzymatic efficiency of the MTHFR and

cystathionine b-synthase enzymes responsible for removing

homocysteine from the circulation (Matthews, 2002). While yet

to be proven to enhance sperm quality, the use of a B group

vitamin supplement (5 mg folate, 100 mg Vitamin B6 and

100 mg Vitamin B12) is probably warranted in any man found

to have hyper-homocysteinaemia and oxidative stress as this

treatment is inexpensive and without significant side effects.

To date, over 30 studies have been published examining the

effect of various antioxidant treatments on sperm parameters and

pregnancy outcome. With such a large body of evidence it

would be expected that firm conclusions regarding the clinical

effectiveness of oral antioxidants on sperm function and preg-

nancy outcome would be available. Unfortunately this is not the

case because of the use of different types and doses of antioxi-

dants, lack of proper prospective placebo controlled study

design and small sample sizes. Many small non-controlled trials

report significant improvements in sperm count, motility and mor-

phology while on antioxidant therapy (reviewed in Agarwal et al.,

2004). However, as these studies are open to bias this review will

only consider properly conducted placebo controlled trials or

prospective trials measuring oxidative stress end points (sperm

peroxidation and DNA damage).

Several studies have reported that levels of ROS within semen

can be reduced by augmenting the scavenging capacity of

seminal plasma using oral antioxidant supplements. The oral anti-

oxidant Astaxanthin (Comhaire et al., 2005), carnitine (Vicari and

Calogero, 2001) or a combination of antioxidants such as acetyl-

cysteine, b-carotene, Vitamin E and essential fatty acids

(Comhaire et al., 2000) have all been shown to directly reduce

seminal ROS levels. A randomized control study comparing

3 months of Vitamin E (600 mg/day) treatment with placebo

has confirmed this reduction in seminal ROS levels (Kessopoulou

et al., 1995). Furthermore, a combination of 400 mg of Vitamin E

and 225 mg of selenium (Keskes-Ammar et al., 2003) or 300 mg of

Vitamin E alone (Suleiman et al., 1996) have been shown in

placebo controlled studies to reduce sperm MDA levels. Finally,

a well-designed RCT of 2 months treatment with 1 g of Vitamin

C and Vitamin E reported a very significant reduction in sperm

DNA damage (Greco et al., 2005a, b). This finding is supported

by non-controlled studies which have also reported a reduction

in sperm DNA damage with the use of a combination of

Vitamin C and E (400 mg each), b-carotene (18 mg), zinc and

selenium (Menezo et al., 2007) or a combination of acetylcysteine,

180 mg Vitamin E, 30 mg b-carotene and essential fatty acids

(Comhaire et al., 2000).

While many relatively poorly designed studies have shown anti-

oxidant supplements to boost sperm count and morphology, the

majority of good-quality studies do not (Agarwal et al., 2004).

The only parameter that appears to be possibly improved with

oral antioxidant therapy is sperm motility. Many well-conducted

studies have shown small but significant improvements in sperm

motility with supplementation of carnitine (Lenzi et al., 2004;

Balercia et al., 2005), selenium (Scott et al., 1998), Vitamin E

(Suleiman et al., 1996), Vitamin E and selenium (Keskes-Ammar

et al., 2003), glutathione (Lenzi et al., 1993) and Astaxanthin

(Comhaire et al., 2005). However, two prospective RCT compar-

ing Vitamin C and E supplementation with placebo have found

antioxidants to have no ability to improve sperm motility (Rolf

et al., 1999; Greco et al., 2005a).

While many studies have show improvements in sperm quality

with antioxidant treatment, the ability of these changes to trans-

late into improved chances of pregnancy is less clear. Suleiman

et al. (1996) reported that treatment with Vitamin E resulted in a

significant fall in ROS damage to sperm and an improvement in

spontaneous pregnancy rates during the next 6 months (21%

pregnant rate in the Vitamin E group V 0% placebo). Conversely,

Rolf et al. (1999) did not report any improvement in spontaneous

pregnancy outcome from 2 months treatment with a combination

of Vitamin C and Vitamin E. Finally, a recent RCT comparing

the antioxidant formulation Menevit with placebo reported a

significant increase in clinical pregnancy rate if the antioxidant

was taken for 3 months prior to IVF-ICSI treatment (Tremellen

et al., 2007). The Menevit nutraceutical is postulated to

improve sperm quality by three complimentary mechanisms.

First, it contains traditional antioxidants such as Vitamins C

and E, selenium and lycopene to protect sperm from ROS

already produced. Second, it contains garlic which is known to

have an anti-inflammatory effect, thereby potentially reducing

seminal leukocyte ROS production (Hodge et al., 2002; Chang

et al., 2005). Finally, Menevit contains zinc, selenium and

folate that are believed to play a role in augmenting protamine

packaging of sperm DNA (Kvist et al., 1987; Pfeifer et al.,

2001), helping to protect sperm from ROS attack. While it is

yet to be proven that combinational therapy such as Menevit

improves sperm DNA integrity, it appears logical that using

several antioxidants with different modes of action, together

with an agent to reduce leukocyte ROS production (Vicari

et al., 2002; Gambera et al., 2007; Tremellen et al., 2007) is

most likely to result in a beneficial effect.

Surgical extraction of sperm

It has been suggested that while sperm are in contact with Sertoli

cells they are relatively protected from oxidative attack (Greco

et al., 2005b), with most ROS-mediated damage occurring

during storage in the epididymis (Greco et al., 2005b). Two

studies have compared sperm DNA quality in the same individual

using either ejaculate (Greco et al., 2005a, b) or surgically aspi-

rated epididymal sperm (O’Connell et al., 2002) with sperm surgi-

cally extracted from the testicle. Both of these studies report

significant improvements in sperm DNA quality in the testicle

Oxidative stress and male infertility

251



derived samples. Unfortunately neither of these studies assessed

oxidative damage to sperm so it is presently uncertain if protection

from epididymal oxidative stress is the sole reason for the

observed improvements in DNA quality. As such, resort to the

use of testicular derived sperm in men with poor DNA quality

should only occur if more conservative treatments such as lifestyle

modification and antioxidant therapy have failed.

Laboratory techniques to reduce the effects of oxidative stress

Centrifugation of a semen sample prior to its use in IUI or IVF can

exacerbate sperm oxidative stress. This can be limited by reducing

the time that the semen is centrifuged (Shekarriz et al., 1995a, b),

use of non-centrifuge separation techniques such as ‘swim-up’ or

glass-wool filtration and limiting the time in which sperm are cul-

tured in media away from seminal plasma. Furthermore, culturing

sperm under low oxygen tension (5%O2/95% CO2 versus 20%

atmospheric O2 content) has been shown to significantly

improve sperm quality by reducing seminal leukocyte ROS pro-

duction (Griveau and Le Lannou, 1997; Whittington and Ford,

1998). Avoiding use of cryopreserved sperm for fertilization is

also ideal since ROS are produced during freezing and thawing

of the sperm, thereby decreasing sperm quality (Watson, 2000).

Sperm preparation media may also be supplemented with

a variety of antioxidants to guard against oxidative stress.

The addition of catalase/SOD (Rossi et al., 2001), Vitamin C

(Donnelly et al., 1999), Vitamin E (Donnelly et al., 1999;

Yenilmez et al., 2006), ferulic acid (Zheng and Zhang,

1997), EDTA (Gomez and Aitken, 1996; Gomez et al., 1996),

glutathione/hypotaurine (Donnelly et al., 2000), albumin

(Twigg et al., 1998) and N-acetyl-cysteine (Oeda et al., 1997)

to sperm preparation media have all been shown to protect

sperm from oxidative attack. At the present moment commercial

sperm preparation media does not contain any antioxidants aside

from albumin and amino acids. Optimized culture media for

sperm is unfortunately lagging well behind the complex sequen-

tial media developed for embryos and certainly needs intensive

research as soon as possible.

Overview

An expanding body of evidence now supports a role for oxidative

stress as a significant cause of male infertility (summarized in

Table III). However, despite being a common pathology in infer-

tile men, oxidative stress is ignored by many infertility prac-

titioners. The currently popular response of resorting to

mechanical techniques such as IVF-ICSI in all cases of male

factor infertility is unlikely to be ‘best practice’ since ROS

damaged paternal DNA will result in poor quality blastocysts,

less than optimal pregnancy rates and an increase in miscarriage.

Antioxidant supplements have now been shown in randomized

placebo controlled studies to protect sperm from oxidative

related DNA damage and to boost pregnancy rates. It may there-

fore be prudent to consider using antioxidants in all infertile

men exhibiting oxidative stress. Presently, one-third of men in

infertile relationships already take such therapies (Zini et al.,

2004), indicating patient acceptance of antioxidant supplemen-

tation in combination with traditional ART treatments. Of

Table III. Summary of the evidence linking OS with male infertility.

1. Many infertile men have significantly higher levels of ROS within their

semen compared to fertile men, placing them at increased risk of OS.

Iwasaki and Gagnon, 1992; Zini et al., 1993; Ochsendorf et al., 1994;

Shekarriz et al., 1995a, b; Pasqualotto et al., 2001; Agarwal et al., 2006a, b;

Athayde et al., 2007.

2. Many infertile men have significantly lower levels of protective

antioxidants within their semen compared to fertile men, placing them at

increased risk OS.

Jeulin et al., 1989; Fraga et al., 1996; Smith et al., 1996; Therond et al., 1996;

Alkan et al., 1997; Lewis et al., 1997; Miesel et al. 1997; Sanocka et al.,

1997; Giannattasio et al., 2002; Koca et al., 2003; Garrido et al., 2004a, b;

Mostafa et al., 2006; Khosrowbeygi and Zarghami, 2007.

3. The generation of sperm OS in vitro (direct application of ROS or

stimulation of sperm intrinsic ROS production) is associated with biochemical

evidence of sperm lipid peroxidation and decreased sperm motility/oocyte

fertilization capacity.

Jones et al., 1979; Aitken et al., 1989; Aitken and Baker, 1995; Aitken et al.,

1995a, b, 1998; Twigg et al., 1998; Whittington and Ford, 1998; Kemal Duru

et al., 2000.

4. The addition of antioxidants to culture media protects sperm from OS

mediated impaired motility.

MacLeod, 1943; Kobayashi et al., 1991; Oeda et al., 1997; Zheng and Zhang,

1997; Donnelly et al., 2000; Rossi et al. 2001; Yenilmez et al., 2006.

5. Seminal OS in infertile men is correlated with impaired sperm motility/
fertilization capacity and increased sperm membrane oxidation.

Aitken et al., 1989; Saleh et al., 2003a, b; Zorn et al., 2003a, b; Zalata et al.,

2004; Jedrzejczak et al., 2005; Kao et al., 2007; Khosrowbeygi and Zarghami,

2007.

6. Antioxidant treatment of infertile men can significantly improve sperm

motility.

Lenzi et al., 1993, 2004; Suleiman et al., 1996; Scott et al., 1998;

Keskes-Ammar et al., 2003; Balercia et al., 2005.

7. The generation of sperm OS in vitro (direct application of ROS or

stimulation of sperm intrinsic ROS production) is associated with an increase

in sperm DNA damage.

Aitken et al., 1998; Twigg et al., 1998; Kemal Duru et al., 2000.

8. Seminal OS in infertile men is correlated with an increase in sperm DNA

damage.

Kodama et al., 1997; Nakamura et al., 2002; Saleh et al., 2002b; Loft et al.,

2003; Oger et al., 2003; Wang et al., 2003; Moustafa et al., 2004; Henkel

et al., 2005; Kao et al., 2007.

9. Antioxidant treatment of infertile men can significantly improve sperm

DNA quality.

Kodama et al., 1997; Comhaire et al. 2000; Greco et al., 2005a, b; Menezo

et al., 2007.

10. The use of antioxidant supplements by infertile men can significantly

increase their partners chances of spontaneous or IVF assisted pregnancy

(RCTs only).

Suleiman et al., 1996; Tremellen et al., 2007.

OS, oxidative stress.
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course, antioxidants should be offered in combination with

changes in lifestyle such as avoiding toxins (cigarette smoke,

pollutants, heavy metals) and excessive heat.

While a role for oxidative stress in male infertility is now estab-

lished, many unanswered questions still remain. First, there is a

clear need to develop inexpensive assays to identify sperm oxi-

dative stress that can be easily conducted in any andrology labora-

tory. Secondly, large RCTs are needed to confirm the effectiveness

of surgical interventions (varicocelectomy, testicular biopsy) in

the management of oxidative stress. Further research is also

required to determine what combination and dose of antioxidant

supplement provides sperm with maximal protection against oxi-

dative stress. Finally, the development of new sperm culture

media that can better protect sperm from the ravages of ROS

damage is clearly required.
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