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Summary Ionic silver exhibits antimicrobial activity against a broad range
of micro-organisms. As a consequence, silver is included in many
commercially available healthcare products. The use of silver is increasing
rapidly in the field of wound care, and a wide variety of silver-containing
dressings are now commonplace (e.g. Hydrofiberw dressing, polyurethane
foams and gauzes). However, concerns associated with the overuse of silver
and the consequent emergence of bacterial resistance are being raised. The
current understanding of the biochemical and molecular basis behind silver
resistance has been documented since 1998. Despite the sporadic evidence
of bacterial resistance to silver, there have been very few studies
undertaken and documented to ascertain its prevalence. The risks of
antibacterial resistance developing from the use of biocides may well have
been overstated. It is proposed that hygiene should be emphasized and
targeted towards those applications that have demonstrable benefits in
wound care. It is the purpose of this review to assess the likelihood of
widespread resistance to silver and the potential for silver to induce cross-
resistance to antibiotics, in light of its increasing usage within the
healthcare setting.
Q 2004 The Hospital Infection Society. Published by Elsevier Ltd. All rights
reserved.
Introduction

Ionic silver (AgC) is considered to be effective
against a broad range of micro-organisms, with low
concentrations documented to have therapeutic
activity.1,2 Silver has been described as being
‘oligodynamic’ because of its ability to exert a
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bactericidal effect at minute concentrations.3

Consequently, a large number of healthcare pro-
ducts now contain silver, principally due to its
antimicrobial activities and low toxicity to human
cells. Such products include silver-coated cath-
eters,4,5 municipal water systems6,7 and wound
dressings.8

Wounds often provide a favourable environment
for the colonization of micro-organisms.6,8–10 In
order to improve the opportunity for wound
healing, it is important to create conditions
that are unfavourable to micro-organisms and
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favourable for the host repair mechanisms, and
topical antimicrobial agents are believed to facili-
tate this process. Antiseptic agents are now
considered for the treatment of localized skin and
wound infections because they have a lower
propensity to induce bacterial resistance than
antibiotics. One example of the early use of silver
in wound care is silver sulphadiazine (AgSD) cream,
developed in the 1960s, for the treatment of burns.
Recently, a trend towards the use of wound cover
dressings that contain silver has been evident, and
today, a selection of foam, film, hydrocolloid,
gauze and dressings with Hydrofiberw technology
impregnated with silver are commercially avail-
able. However, concerns are being expressed
regarding the overuse of silver and the possible
emergence of bacterial resistance to silver, par-
ticularly within the clinical environment.11,12

Silver-resistant bacteria have been reported since
197513–22 and research within this area is clearly
increasing.23 A preliminary understanding of the
genetics underlying silver resistance has been
known since 1998,24,25 with a greater understanding
of the biochemistry documented a year later.26

Clinical evidence of silver-resistant bacteria has
been principally in hospitals, specifically in burns
wards, where silver salts (in the form of silver
nitrate) are used as antiseptic agents.13,27

Many clinicians and researchers have questioned
whether the widespread usage of silver could lead
to cross-resistance to antibiotics, as has been
suggested with a number of biocides, specifically
triclosan, chlorhexidine and quaternary ammonium
compounds (QACs).28,29 However, in reference to
the available evidence to date, this appears to
represent an unjustifiable concern.

It is the purpose of this review to assess the
likelihood of widespread resistance to silver and the
potential for silver to induce cross-resistance to
antibiotics, in light of its increasing usage within
the healthcare setting.
Wound microbiology and antimicrobial
agents

Wounds often provide a favourable environment for
the colonization of micro-organisms which may
both delay healing and cause infection. Bacteria
found in wounds originate primarily from the mouth
and colon, and constitute a unique collection of
organisms that are potentially pathogenic. Conse-
quently, broad-spectrum antimicrobial agents are
required to control these mixed species populations
to minimize the opportunity for infection. This has
been reflected in the increased usage of silver in
wounds, principally due to the fact that silver is
relatively safe and exhibits broad-spectrum anti-
microbial activity.30–34
Mode of action of AgC

In bacteria, silver ions are known to react with
nucleophilic amino acid residues in proteins, and
attach to sulphydryl, amino, imidazole, phosphate
and carboxyl groups of membrane or enzyme
proteins that leads to protein denaturation.1,19,35

Silver is also known to inhibit a number of oxidative
enzymes such as yeast alcohol dehydrogenase,36

the uptake of succinate by membrane vesicles37 and
the respiratory chain of Escherichia coli, as well as
causing metabolite efflux38 and interfering with
DNA replication.1 One of the primary targets of
AgC, specifically at low concentrations, appears to
be the NaC-translocating NADH:ubiquinone oxido-
reductase system.39,40 Silver has also been shown to
be associated with the cell wall,41 cytoplasm and
the cell envelope.42 Chappell and Greville43

acknowledged that low levels of AgC collapsed
the proton motive force on the membrane of
bacteria, and this was reinforced by Mitchell’s
work in 196144 and 1966.45 Later work by Dibrov et
al.46 showed that low concentrations of AgC

induced a massive proton leakage through the
bacterial membrane, resulting in complete de-
energization and, ultimately, cell death. Overall,
there is consensus that surface binding and damage
to membrane function are the most important
mechanisms for the killing of bacteria by AgC.3

The reader is directed to a review paper which
addresses the antimicrobial actions of silver com-
pounds by Clement and Jarrett.3

In a complex biological system such as wound
fluid, the maximum level of free (available) AgC is
approximately 1 mg/mL (above this level, AgC

complexes with anions such as chloride to form
minimally soluble and inactive salt). Chloride ions
present in the exudate of acute and chronic wounds
affect the availability of ionic silver. The solubility
of silver chloride is 14 mM47 and AgSD is 3 mM.48 In
the presence of excess amounts of sodium chloride,
the concentration of free AgC is lowered to
approximately 2 nM, regardless of the concen-
trations of silver nitrate added.49 Experiments by
Gupta et al.50 have shown chlorides to have three
levels of effect on the availability of AgC. Within
external environments, AgC binds strongly to the
bacterial cell surface with toxic effects, often
inhibiting the bacterial respiratory transport
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chain.51 AgC is active against bacteria, fungi and
viral pathogens at concentrations of 10K9 to 10K6

M.1
Bacterial resistance

General resistance mechanisms

Resistance to an antimicrobial agent can occur
either by ‘intrinsic’ or ‘acquired’ mechanisms.
Acquired resistance can arise by either mutation
or the acquisition of various types of genetic
material in the form of plasmids, transposons and
self-replicating extra-chromosomal DNA.52

Acquired resistance to a wide range of antibiotics
has been observed in a variety of micro-organ-
isms.53 Intrinsic resistance is a phenotype demon-
strated by micro-organisms before the use of an
antimicrobial agent, i.e. a natural resistance
property of an organism. Intrinsic resistance to
antimicrobial agents can be provided by a number
of mechanisms including the nature and compo-
sition of the bacterial cell wall that may act as a
permeability barrier, thus reducing uptake of the
compound, and also by constitutively synthesized
enzymes that may bring about degradation of a
compound.52

Biocides (such as silver) and antibiotics have
differing modes of action. Biocides tend to target
multiple sites on or within bacterial cells and hence
have broad-spectrum activity. Antibiotics tend to
target specific sites on or within a bacterial cell and
have a narrower spectrum of activity. Antiseptic or
biocide resistance can be acquired via mutations in
normal cellular genes, plasmids or transposons.54

Plasmid-mediated biocide resistance has been
documented55,56 as occurring in Staphylococcus
aureus, coagulase-negative staphylococci, mem-
bers of the Enterobacteriaceae and Pseudomonas
spp.57–61 The vast majority of biocides act on cell-
surface components of the bacteria and/or the
cytoplasmic membrane. Therefore, intrinsic resist-
ance would involve natural resistance via the
structure of the cell surface and its chemical
composition.62

In comparison with bacteria, very little is known
about the ways in which fungi can circumvent the
action of biocides.52 Resistance has been observed
to arise from either inherent or acquired resistance,
and chlorhexidine-resistance has been found in
strains of Saccharomyces cerevisiae.52 Similarly,
biocide resistance to anaerobic bacteria has been
poorly researched, indicating that resistance to
these compounds is not widespread.
Transposons and integrons significantly enhance
the development of transferrable resistance due to
their ability to move from plasmid to chromosome
and subsequently pass resistance on to daughter
cells. Transposons and integrons have also been
found to possess a number of genetic determinants
encoding resistance to QACs and heavy metals.
Selective pressure, which is exerted by one anti-
microbial agent, is likely to maintain co-resistance
phenotypes mediated by adjacent genes. There-
fore, it is possible that exposing integron-carrying
bacteria to residual concentrations of biocides may
encourage antibiotic resistance.63 However,
further investigations are warranted in this area
and at present it remains speculation.

Chromosomal mutations to antibiotics have been
recognized for decades. However, fewer studies
have been performed to determine whether
mutation confers resistance to biocides.52 An AgC

resistance determinant in Enterobacteriaceae has
recently been cloned and sequenced, but none has
yet been identified in Gram-positive bacteria
despite staphylococci and other Gram-positive
bacteria being exposed to silver compounds in
clinical use.1 In the hospital environment, it has
been suggested that rather than plasmid-mediated
resistance, continual exposure to sub-inhibitory
antibiotic concentrations may cause subtle changes
to the bacterial outer structure stimulating cell-to-
cell contact.52 However, it remains to be deter-
mined if residual concentrations of antiseptics
in clinical situations could produce the same
effect.52,64

Silver23 suggested that it is possible that the
widespread and uncontrolled use of AgC may result
in more bacteria developing resistance. However,
the probability of transfer of silver resistance genes
is considered to be low,13,14 unstable and difficult to
maintain15,22 and transfer.13,14 The frequency of
occurrence of AgC resistance has been shown to be
variable,65 with the conditions for distinguishing
between AgC resistance and AgC sensitivity being
poorly understood.3,23 Examples of silver-resistant
bacterial strains that have been isolated include
E. coli,15 Enterobacter cloacae,15 Klebsiella pneu-
moniae,15 Acinetobacter baumannii,22 Salmonella
typhimurium13 and Pseudomonas stutzeri.18

Bacterial resistance to heavy metal ions can
result from energy-dependent ion efflux systems
rather than chemical detoxification. In Gram-
negative bacteria, biocides are blocked from reach-
ing targets in the cell by the outer membrane (OM)
and active efflux mechanisms.66,67 With reference
to OMs, Pugsley and Schnaitman68 documented that
E. coli mutants that lacked the OM porins were
more resistant to AgC. Li et al.49 also suggested
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that active efflux may play a major role in AgC

resistance, which was likely to be enhanced
synergistically by decreases in OM permeability.
Efflux pumps are composed of proteins either as an
ATPase or chemi-osmotic cation/proton antipor-
ter,69–71 and AgC has been associated with both of
these mechanisms.72

Plasmid-mediated AgC resistance has been
identified in P. stutzeri, members of the Enter-
obacteriaceae and Citrobacter spp., although the
mechanism of resistance has yet to be elucidated.52

It has been documented that bacteria with silver-
resistance plasmids accumulate less AgC than the
susceptible strains.22 This observation was deter-
mined to be a non-active efflux process. A plasmid
conferring resistance to a number of antibiotics and
heavy metals including AgC was obtained from a
Salmonella species isolated from a burns unit after
causing septicaemia, death in three patients and
resulting in the closure of the burns unit at
Massachusetts General Hospital.72 This was the
first report of the genetic and molecular basis for
AgC resistance. The plasmid, named pMG101, was
180 kb in size and conferred resistance to Hg2C,
tellurite and several antibiotics, together with
AgC.72 The region of pMG101 responsible for
increased resistance to silver was cloned and
sequenced. The gene cluster for AgC resistance
was found to contain nine genes,23 seven of these
were named and two were classified as open
reading frames (silP, ORF105, sil AB, ORF96, silC,
silSR and silE). For a more detailed description of
how these genes function, the reader is directed to
the paper by Silver.23

Laboratory studies have provided evidence of
plasmid pMG101 transfer to E. coli. In fact, AgC

resistance conferred by plasmid pMG101 enabled
the growth of E. coli in more than 0.6 mM AgC,
which is in excess of six times the tolerable
concentration for sensitive E. coli.73 Plasmid
pMG101 is known to encode a number of periplas-
mic and AgC-specific binding proteins.
Link between AgC usage, resistance and
antibiotics

AgC resistance is most likely to be found in
environments where greatest AgC usage of silver-
containing products might be expected, such as in
the dental setting where amalgams are known to
contain 35% silver,74 burns units in hospitals75 or the
use of silver-coated catheters.4

Some biocides disrupt cellular targets, and
subsequent mutations in these targets may confer
low-level cross-resistance to certain antibiotics
used in humans. Whilst a number of laboratory-
based studies have indicated a possible association
between bacterial resistance to biocides and cross-
resistance to antibiotics, solid evidence is lacking.
As such, this area remains contentious.

There does, however, appear to be some
similarity between bacterial resistance to anti-
biotics and antiseptics. A study by Akimitsu et
al.76 reported methicillin-resistant Staphylococcus
aureus mutants resistant to benzalkonium chloride
that exhibited increased resistance to various beta-
lactam antibiotics compared with the parent strain.
Yamamoto et al.77 characterized a multi-resistant
plasmid of S. aureus that conferred resistance to
kanamycin, gentamicin, tobramycin, amikacin,
acriflavin and ethidium bromide, but also to
benzalkonium chloride and chlorhexidine. Suller
and Russell78 investigated possible links between
triclosan and antibiotic resistance in S. aureus.
They isolated a S. aureus mutant that exhibited
increased resistance to triclosan, but it did not
display increased resistance to any antibiotic
tested. Chuanchen et al.79 have shown that
triclosan is a substrate for three distinct efflux
pumps in Pseudomonas aeruginosa. Research has
shown that exposure to triclosan can select for
multi-resistant mutants via upregulation of these
same efflux pumps. P. aeruginosa deletion mutants
defective in the efflux pumps became susceptible to
triclosan. From this research, it is apparent that
exposure to antibiotics and triclosan can select for
multi-resistant bacterial pathogens via overexpres-
sion of identical multi-drug efflux systems. Studies
by Al-Masaudi et al.80 and Rutala et al.81 have
shown that hospital strains of antibiotic-resistant
bacteria do not display increased resistance to
biocides, and that S. aureus, after exposure to
biocides, does not increase the transfer of anti-
biotic-resistant plasmids.

Efflux pumps which underlie intrinsic antibiotic
resistance can also contribute to biocide resist-
ance. One of these efflux systems is found in E. coli,
acrAB locus82,83 and the P. aeruginosa mexAB,
mexCD and mexEF efflux systems.84 Moken et al.82

demonstrated that deletion of the acrAB efflux
locus in pine-oil-resistant E. coli and in E. coli mar
(multi-antibiotic-resistant) mutants resulted in a
10-fold increase in susceptibility to dimethyl benzyl
ammonium chloride (quaternary amine) and chlor-
oxylenol (phenol). It was found from this study and
others that broad-spectrum efflux pumps can
mediate resistance for both biocides and
antibiotics.83

It is evident that bacteria tolerate biocides and
antibiotics by employing the same types of cellular
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mechanism. Activation of the same efflux pumps
can result in decreased bacterial susceptibility to
both antibiotics and biocides. Enzymatic modifi-
cation and destruction are commonly used by
bacterial resistance mechanisms.

Levy85 stated that it is probable that the
increasing use of biocides will eventually result in
the selection of bacteria that are less susceptible.
In fact, bacterial adaptation and resistance to
biocides is certainly not a new phenomenon.86

Furthermore, the contribution of biocides to the
development of bacterial antibiotic resistance has
yet to be fully elucidated. Additional research is
required to examine the modes of action of
biocides87,88 and bacterial biocide resistance mech-
anisms, as well as to better characterize potential
cross-resistance with antibiotics.

It has been shown that most interactions
between chemotherapeutic agents and microbial
populations occur at very low concentrations,73 and
that low concentrations produce a substantial
stress in bacterial populations that eventually
influences the rate of variation and the diversity
of adaptive responses leading to high levels of
resistance.89 To date, it is unclear whether the use
of heavy metals, such as AgC, is contributing to the
emergence and spread of antibiotic-resistant bac-
teria; however, this is unlikely.89 A recent paper by
Cole et al.91 concluded that there was a lack of
antibiotic and antiseptic agent cross-resistance in
target bacteria from the homes of antibacterial
product users and non-users, as well as increased
prevalence of potential pathogens in non-user
homes. This study ‘refutes widely, yet unsup-
ported, hypotheses that use of antibacterial pro-
ducts facilitates the development of antibiotic
resistance in bacteria’.90 Gilbert and McBain’s
paper in 200491 concluded that the risks associated
with the overuse of biocides has been overstated,
and that it is now imperative that confidence is
restored in products that form an essential part of
domestic and hospital hygiene.
Use of AgC in wound care

Silver has been used extensively for the treatment
of burns,92,93 with AgSD incorporated into bandages
for use in large open wounds.94,95 Many silver-
coated and silver-containing dressings are now
available for the treatment of wounds.

Although resistance to heavy metals, such as
AgC, has been studied and reported, exact mech-
anisms are not known and there is little current
evidence of emerging microbial resistance to silver.
Increased use of AgC in wound care has created
some concern regarding the development of bac-
terial resistance but, unlike antibiotics, resistance
to antiseptics such as AgC is rare and sporadic.
Certainly, with widespread use of AgC in wound
care, more potential pathogens are going to be
exposed to this agent. However, it remains to be
seen whether resistance will increase. With the
knowledge that silver-resistance genes exist spor-
adically in certain types of bacteria, it would be
appropriate for future studies to determine the
actual prevalence of these genes within clinical and
environmental settings. However, it is important to
note that bacteria have been exposed to sub-
inhibitory levels of AgC for over four billion years
and no widespread resistance has been evident to
date, whereas widespread antibiotic resistance has
developed within the last 60 years. A recent paper
by Gilbert and McBains91 suggested that in wound
care, hygiene should be emphasized and targeted
towards those applications which have demon-
strable benefits.
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